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1. Introduction

"To the right and to the left as in mirrors, to the right and to the left through the glass walls I see others
like myself, other rooms like my own, other clothes like my own, movements like mine, duplicated
thousands of times. This invigorates me; I see myself as a part of an enormous, vigorous, united body;
and what precise beauty!" (Zamyatin, 1924, pp.31-32)
Our current information age is shifting the concept of privacy day by day. Privacy may eventually be a
futile notion, drowned in an ocean of big data (Bollier and Firestone, 2010). The main eroding forces
on privacy include the amount of information that is available, the data hunger of public and private
institutions, the (perceived) threat of terrorist attacks and the corresponding business opportunities
of (security) companies, and the rise of smart algorithms (Nilsson, 2010) to automatically gather,
store, analyze, and utilize enormous amounts of data 1.

When it comes to big data and privacy, we can find examples in every newspaper on an almost
daily basis. In the Netherlands, current debates and plans are about i) a central database for medical
records, ii) a GPS-based tracking system that will be required in every car to make differentiated use
and payment possible, iii) a chip card system which will record and track every individual making use
of public transportation, and iv) smart energy meters that will monitor our demand for energy. These
systems can deliver useful information to optimize various services but at the same time they disclose
a lot of information concerning habits, preferences and whereabouts of individuals. Other concrete
systems include v) surveillance cameras extended with microphones in Amsterdam, vi) automatic
face recognition in the Rotterdam metro system, vii) body scanners at Schiphol airport, and viii)
the addition of our biometric data (e.g. fingerprints) to our passports. All these systems are tacitly
introduced into our societies and generate huge amounts of private information of individuals.

When people talk about negative aspects of privacy they often employ terms as "Big Brother" and
"Orwellian", to connect to the idea of an all-seeing eye overseeing every bit of information we (have
to) reveal about ourselves. Sometimes we are aware of this modern electronic version of Bentham’s
panopticum and consciously think about the fact that we are being watched continuously, and some-
times act accordingly. In most occasions, however, privacy is seen as attached only to the informa-
tion we reveal, or have to give up, about ourselves to governments, companies and other parties. Our
concerns are often solely about what personal information, i.e. attached to a specific identity, is out
there, who gets to see it, who owns it, and how that information is used to control, track, monitor

1There has been considerable debate about the characteristics of our information age, in which smart algorithms and
large amounts of data are ubiquitous. Various concepts have come up, and their properties and consequences for interac-
tion, privacy and human factors have been discussed. These include ubiquitous computing, pervasive computing, ambient
intelligence, smart environments and so. In this article it suffices to think of any environment where large amounts of in-
formation about user’s behaviors are being measured, stored, analyzed and exploited to build general models about users
and their behavior. The crucial factor is that all these operations on this data are automated through the use of intelligent
computer algorithms. See also (Brey, 2005)
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or even manipulate us. Many studies concerning the legal aspects of such information have been
conducted, and countermeasures exist in the form of privacy preserving algorithms.

Attaching data and information to specific individuals is related to identification and control,
and it is here where the connection to Orwell’s 1984 2 and its Telescreens is appropriate. However,
in the context of big data, the concept of profiling makes it possible to go beyond the individual
level (i.e. identity, cf. de Vries, 2010), and track, monitor, measure and manipulate various groups of
individuals. Profiling amounts to building (statistical) models from large amounts of data from many
individuals, after which the profiles themselves can be exploited to derive novel information about
particular individuals. For example, even though I may not know the writer Murakami, a quick look
at my book purchases on the internet may reveal that it is very likely that I will appreciate his writing.
This aspect of privacy comes much closer to the dystopian novel We by Zamyatin (see the opening
quote in this article) than to Orwell’s book. Indeed, one can imagine walking through one of the
streets Zamyatin describes, filled with glass houses, and observing many citizens at the same time,
seeing correlated behavioral patterns, in other words: building profiles. Extending the metaphor;
even if I would – as an individual – replace all glass in my own house by wood (i.e. protect my data)
it would still be possible to build profiles of all my neighbors and derive information about me for
exploitation, manipulation or control by third parties.

Profiling is enabled by progress in faster computers, the availability of data, the Internet, and
especially smart algorithms to process, understand and employ the data. These algorithms stem
from the field of artificial intelligence (AI), and include machine learning (ML) and datamining (DM).
Many people do have experience with some of these techniques, for example when Amazon or on-
line music stores make recommendations based on previous purchases or click-data from different
users. Online stores can use their customer data to "guess" that you may like a particular product you
have never seen before. Privacy as in who-can-see-what-information has always been an issue3, yet
the broader possibilities and implications of smart algorithms and profiling have not yet been well
studied, especially not from the viewpoint of privacy (but see Hildebrandt and Gutwirth, 2008c). In
order to facilitate such studies into such ambient law (Hildebrandt and Koops, 2010), and encourage
a debate on the implications of profiling, we will describe some of the main characteristics of data
science and smart algorithms, with a light emphasis on probabilistic approaches.

The outline of this article is as follows. In the next section we first explain the characteristics of
profiling and how it’s related to identification. The main section starts after that and deals basically
with "all one can do with large amounts of data". We discuss three main approaches in data science
and how they interconnect. The last part of this article deals with several selected topics and trends
in data science which are particularly interesting in developments concerning privacy.

2. Data, Behavior, Persons and Profiles

We first have to consider several important notions. Here we look upon possible sources and forms of
data about users and their behavior, and we discuss what profiles are and how these relate to (virtual)
persons and identity.

2.1 Elements of Profiling

In order to understand ML approaches to profiling, we need to distinguish data and behavior on the
one hand, and persons and profiles on the other.

2Even the ownership of electronically purchased books can be unclear. An ironic example was recently given by Amazon,
who removed the electronic version of Orwell’s 1984 from customer’s e-readers without their permission.

3See for example the concerns about the so-called database society (Warner and Stone, 1970) forty years ago.
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2.1.1 DATA AND BEHAVIORS

Nowadays there is much data available, and it comes from various sources. Put very simply, gov-
ernments want lots of data for security and control, companies want to make money, and scientists
want interesting data. Furthermore, people like to share lots of information on social networks, list
sites, blogs, etc. Computers, and especially the internet, enables the generation and storage of mas-
sive amounts of data in electronic form which makes size and location relatively meaningless. In
contrast, decades ago scientists, companies and governments were relying on manual labor4 and
annotation to obtain useful data. A notorious example is the East-German security agency Stasi with
a large part of the population physically gathering physical information about citizens5 Especially
companies like Google and Facebook have greatly expanded their automated data gathering efforts6.
A lot of data comes from people leaving electronic traces when they perform ordinary daily activities,
because they either use services provided by companies or they make use of government-provided
services such as utilizing a passport, or traveling through electronic transportation. Companies har-
vest data mainly because they can use it to approach individuals with targeted advertisements7 and
governments are much concerned with surveillance and terrorist’s threats8.

In science, data has always been important for experiments. But also many other efforts to ob-
tain additional data to aid in the process of profiling and understanding. For example, in the 80’s
people like Douglas Lenat9 started to formalize commonsense knowledge and create huge databases
with useful knowledge to reason about ordinary things, like a dog has four legs, a cat too, and both
cats and dogs are mammals. Recent ontologies, databases such as OpenMind10 and the well-known
Wikipedia are all efforts in this direction, and of which knowledge can be drawn for ML purposes.
Other recent efforts use entertaining games to collect data. For example, Luis Von Ahn created a se-
ries of games in which users had to interact with each other and where the playing behavior provided
the necessary labels for pictures11. Yet another example is the Mechanical Turk 12 initiative where sci-
entists can post data to be annotated by humans for profit. All these initiatives generate meaningful
data through human labor. The generation and exchange of such knowledge by robots only is ex-
plored in various projects, for example the RoboEarth project13. But above all, much data is supplied
and maintained by people themselves, in the form of personal pages on social networks, life blogging
and making lists, Flickr photo accounts, general blogs, chat rooms and Skyping and many more.

With data we consider all pieces of information lying around in electronic databases, on the in-
ternet and so on. However, in the context of profiling, we want talk more specifically about user data
and user behavior. User data is any set of information pieces that can be attributed to the same en-

4See the hilarious movie Kitchen stories (http://www.imdb.com/title/tt0323872/) in which researchers physically sit
many hours in real kitchens to observe how people move around it and use it.

5See the interesting movie Das Leben der Anderen (http://www.imdb.com/title/tt0405094/).
6Services on the internet are most often not as free as they seem; in the end you pay with information, which can be

transformed into cash through profiling (Sobiesk and Conti, 2007). See also Microsoft giving up users’ privacy for profit, in
Wall Street Journal August 2nd 2010
(http://online.wsj.com/article/SB10001424052748703467304575383530439838568.html)

7See for an extrapolated example in the future the movie Minority report (http://www.imdb.com/title/tt0181689/)
8Many movies play with these concepts, see for example EyeBorgs (http://www.imdb.com/title/tt1043844/), 1984

(http://www.imdb.com/title/tt0087803/) and Enemy of the state (http://www.imdb.com/title/tt0120660/)
9See the work on Cyc (Lenat et al., 1990), with recent versions for commercial and academic use.

10http://www.openmind.org/
11In the Peekaboom game, the goal is to obtain labeled images, i.e. labeled with the concept appearing on it. One player

is peek and the other is boom. Boom starts with an image and a word, and can reveal parts of the image, and peek can
guess the word (boom can indicate whether cold or warm). There is an incentive to get more points by only revealing the
necessary part of the image, see (von Ahn and Blum, 2006)

12https://www.mturk.com/mturk/welcome
13RoboEarth is a World Wide Web for robots: a giant network and database repository where robots can share information

and learn from each other about their behavior and their environment (http://www.roboearth.org/)
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tity. This can be, for example, the properties of a network account, or the combined facts filled in at
some webpage. User behavior is defined similarly, but now the pieces of information are actions, for
example the path walked in front of a surveillance camera, or the click behavior on some webpage.
In many cases it is not necessary to distinguish between actions and facts, and we can combine all
information into one record. de Vries (2010) calls these informational shibboleths, a term coined by
Derrida14. Crucial here is that the information belongs to each other (i.e. to one (virtual) identity.

2.1.2 PERSONS AND PROFILES

The main dichotomy that is important in this article, and which will be defined more precisely in a
latter section, is that between data at an individual level and that at an aggregated level. The first
deals with personal data (of any kind) of a specific individual, consisting of individual pieces of infor-
mation. The second level is the profiling level, consisting of (statistical) models which model corre-
lations between pieces of information appearing in the individual’s data, causal patterns and general
rules that apply to a subset of the individuals; for example, that people who have bought X and Y are
more likely to buy product Z if they have already looked at product W. Profiles provide means to infer
knowledge about an individual that is not actually observed15.

The crucial difference between the two levels is that the information at the individual level is
actually observed, i.e. it is factual knowledge. Knowledge at the profiling level is not usually avail-
able to the individual user, and often not observed. Instead, the profile is applied to the individual
user to infer additional facts, preferences, or assumed intentions (e.g. to buy some product). Thus,
we aim mostly at what Hildebrandt (2008) calls non-distributive profiles, for example a checklist for
psychopaths in which the profile lists properties which will not hold for all people who will most
likely belong to that profile. An interesting fact is that in order to apply a profile to an individual,
one generally does not need to identify the individual with a real person; just some observed facts
may be enough to predict what is needed (see Neudecker, 2010, for interesting examples). On the
other hand, identification is a useful way to link different sets of facts to the same individual, thereby
extending the information about a certain virtual person16

Hiding information yourself will often not work, since the provider of the service (e.g. Facebook)
owns all data anyway, and there are many ways additional information about you gets revealed by
other users, applications and so on. Even social security numbers provide the means to infer addi-
tional information through statistical analysis (see Acquisti and Gross, 2009). In one famous case,
the internet provider AOL released (in 2006) data of twenty million search keywords for over 650,000
users, and this data was anonymized. However, users often provide much information about them-
selves in their search queries. The New York Times successfully discovered the identity of several
searchers, and exposed user number 4417749 as Thelma Arnold, a 62-year-old Georgian widow 17. In
some cases, privacy-preserving techniques can, and have been, applied in the context of automated
datamining, but this is no safeguard against profiling.

14Her algorithmically constructed shibboleths will get a more technical meaning in Section 3.
15"Profiles discovered by these techniques may not be anticipated, desired or politically correct but modern algorithms do

no (yet) have the power to care" (Anrig et al., 2008).
16This is why lately many services at social networks are connected to many other sites; to increase the knowledge about

each virtual person. In fact, quite interestingly, the more power people think they get about the information they disclose,
the eager they are in sharing even more information (see the illusion of control principle) (Brandimarte et al., 2009).

17See (Barbaro and Zeller Jr., 2006) and http://en.wikipedia.org/wiki/AOL_search_data_scandal
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2.2 Automated Profiling: Activity Recognition

Profiling18 is the formation of general models on the basis of data from a number of individual users.
The automated way version of this amounts to machine learning and datamining. In addition to
information available about people in databases and on the internet, a great amount of additional
sensors is available for increased data gathering and behavior monitoring. These sensors include
RFID tags, video cameras (e.g. CCTV), GPS signals and mobile phones. A common feature of these
devices is that they are widely available in our daily life, as opposed to specialized or expensive sen-
sors such as ultrasonic sensors or brain scanners. A subfield of AI particularly interested in learning
profiles from such rich (sensor) data is activity recognition (Yang, 2009). Here we view activity recog-
nition as the main research area subsuming profiling. Its aims are to interpret the sensor readings of
humans (or moving things) and tell us in high-level, human understandable terms what is going on.

The last years, there is a growing interest in privacy aspects of such automated procedures for
profiling and activity recognition20. Quoting one of the main investigators in that area: "Profiling is a
matter of pattern recognition, which is comparable to categorisation, generalisation and stereotyping.
To understand what is new about profiling we must differentiate between classification (ex ante cat-
egorisation) and clustering (ex post categorisation) ..." (Hildebrandt and Gutwirth, 2008a, chap.17).
Classification approaches (and related techniques) usually take the stance of a classical ML setting
in which some function is learned from data. The ex post categorization approaches are more aimed
at finding corresponding (behavioral) patterns among users, finding interesting new knowledge, and
clusters of people who share certain features. In the latter, the feedback (or guidance) is less related
to what we want to learn (e.g. a classification), but more related to for what purpose (e.g. what are the
interesting characteristics of people who are likely to buy my product). Some pointers to the field are
about activity learning (Turaga et al., 2008), activity mining (Cao, 2006), tracking (Xiang and Gong,
2006), and databases (Choudhury et al., 2006)

18Modeling and predicting behavior solely based on externally observable features resembles the behaviorism movement
in psychology in the first half of the twentieth century with famous names such as Watson and Skinner. Quoting the latter;
"A much simpler solution [simpler than equating the mind with the brain] is to identify the mind with the [physical] person.
Human thought is human behaviour. The history of human thought is what people have said and done." (Skinner, 1976)19.
Behaviorists felt that because it was absolutely impossible to look inside someone’s brain to find out why some behavior
comes about, they argued that psychology should be only concerned with externally observable features of behavior. Stip-
ulating higher-order motivations, reasons, goals, intentions and things like that are merely speculation about the reasons
for certain behavior. Whereas humans could possibly talk about their motivations, and perform introspection on what was
on their mind (as cognitive psychologists would do) is not the right way to do repeatable, falsifiable science, especially with
animals which are not capable of verbal explanations or introspection. The problems Hartz Søraker and Brey (2007) see
are only partially valid, since the success of search engines such as Google and many other successful applications in ac-
tivity recognition, show that much can be done by "just" correlation patterns. These successes are described in the famous
Wired issue of 2008 on "The Petabyte age" (Wired July 2008)., the 2010 report on "Big Data" (Bollier and Firestone, 2010) and
several special issues of magazines such as The Economist (e.g. The Data Deluge, (and how to handle it; a 14-page special
report). The Economist Feb27-Mar05 2010.

The behaviorist movement in psychology is mirrored in AI by movements such as behavior-based approaches (Brooks,
1991), new AI and embodied AI Pfeifer and Scheier (1999), and also reinforcement learning (Sutton and Barto, 1998). All
these directions place a particular emphasis on not representing or reasoning about intentions, goals, motivations, or inner
states, but instead focus on how predictions and behaviors directly follow from data. This is unlike many other trends in AI
where the goal is – in contrary – to model cognitive belief states, intentions, rich internal structures and so on (cf. Langley,
2006; Langley et al., 2009). It is good to keep in mind that many of the current techniques in data science which we describe
here can in principle be applied in both contexts, although we lean slightly towards the behaviorist approaches. The advent
of semantic techniques is a recent trend, and many researchers focus on such issues since they promise transparency and
transfer of knowledge across domains, and some examples in the context of the web can be found in (Torre, 2009).

20See more on this in the book by Hildebrandt and Gutwirth (2008c), more specifically the chapters by Hildebrandt
(2008), (Hildebrandt and Gutwirth, 2008b) and (Anrig et al., 2008).
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2.2.1 APPLICATIONS AND DOMAIN EXAMPLES

There are many examples where automated learning has been applied to learn models of users and
their behavior and we can only scratch the surface of what is going on. Applications of behavior mod-
eling, recognition and prediction can be found in video surveillance, robot control, social networks,
physical movement tracking, online shopping, computer games and many more21 Profiling behav-
iors was studied early on in AI. For example, opponent modeling approaches for games have been
very successful in Chess22. Recent progress in games like Poker demonstrates that such models can
be learnt from databases of games played. Furthermore, they can also be used to categorize players
into cautious or aggressive bidders.

Well-known profiling applications are webshops and search engines. Most people will have seen
the recommendations of books or music, or web advertisements based on search behavior. People
are often quite surprised how accurate they can be, and the occasional blunder will be rationalized
afterwards23. Many systems are web-based (Perkowitz et al., 2004; Torre, 2009) and especially social
networks are a gold mine for activity recognition efforts. Here, an interesting approach based on
photo collections is described by Singla et al. (2008). They insert many kinds of general rules into a
system that tries to classify each person appearing in the photos into spouse, friend, etc. Examples of
(commonsense) rules are i) parents are older than their children and ii) spouses have opposite gender.
So-called soft rules are rules that will only sometimes be true, e.g. iii) children and their friends are
of similar age and iv) friends and relatives are clustered. By training a system with annotated data,
the authors found out that rules such as if person A and B are friends, they are about the same age are
found to be highly likely by the system.

Many approaches nowadays are based on video as input. The increasing number of cameras in
public and private spaces create a huge demand, and current computer vision technology is increas-
ingly capable of recognizing, tracking and monitoring the video streams (Le et al., 2010). In addition
to monitoring CCTV cameras, for example in metro stations, other applications can be found. For
example, Francois Bremond recently investigated such techniques in elderly care in the GerHome
project (Zouba et al., 2009). A replica of a home for the elderly was built, full of cameras and other
sensors. The goal is to build automated systems that can learn from inhabitant’s behaviors, and de-
tect, for example, when things go wrong. For example, usually when people move from the kitchen
to the living room, they will sit on a chair, but if mister X is staying in between – not in a standing
position – then it is likely that something is wrong. Another vision-based approach was reported by
Damen and Hogg (2009) who learned typical patterns of when a bicycle was being stolen versus it
being picked off by the right owner. Vision-based techniques are obviously useful, but technically
very difficult due to the complexity of recognizing things and people on real-world vision data.

Other kinds of approaches that will become increasingly important are based on location-based
sensors such as GPS. Applications such as Google Maps can already make use of your location to
recommend a good pizza place in your immediate vicinity. These features can also be used to learn
typical behavioral patterns. Liao et al. (2005) learned to extract and label a person’s activities and
significant places from GPS traces. Behavior profiles were learned from complex relations between
readings, activities and significant places. The system was capable of highly accurately labeling cer-
tain areas on the map as being related to work, sleep, leisure, visiting picking-up car etc.

21See (Krueger et al., 2007; Turaga et al., 2008) for surveys.
22The famous defeat of Gary Kasparov by the IBM Chess Computer Deep Blue was largely based on tuning the playing

style against him (Schaeffer and Plaat, 1997)
23For example, searching for a new style file for the text editing system LATEX with "latex style" can trigger advertisements

for stylish rubber clothes.
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3. Automated Computational Methods for Profiling

In this section we describe some of the main conceptual and technical issues involved in profiling.
We distinguish first between representations of data and profiles and afterwards highlight several
characteristics of how these can be employed by algorithms for inference, learning and explanations.

3.1 The Field of Machine Learning

Machine learning is a "branch of AI that seeks to develop computer systems that improve their per-
formance automatically with experience", taking inspiration from diverse fields such as computer
science, mathematics, statistics, optimization and psychology and many others. The terms pattern
recognition, machine learning, data mining and optimization are often used for techniques in this
area (such as classification, clustering, regression and probabilistic modeling), but very often not
consistently. Here we use the general term machine learning, and take it to stand for any methodol-
ogy and set of techniques that can employ data to come up with novel patterns and knowledge, and
generate models (e.g. profiles) that can be used for effective predictions about the data.

Much of modern ML was developed in the last two decades. A classic textbook is (Mitchell, 1997)
and a more recent book with the same scope is (Alpaydin, 2004). The more recent relational setting
(see Section X) is described in (Džeroski and Lavrac, 2001; De Raedt, 2008). Current approaches are
firmly grounded in statistics (Hastie et al., 2001) and probabilistic models (Pearl, 1988), more gen-
erally probabilistic graphical models (Koller and Friedman, 2009). Reinforcement learning (see later
sections) is discussed in detail by van Otterlo (2009) and Sutton and Barto (1998). Datamining as a
separate technique is treated in (Witten and Frank, 2005).

3.2 Representational Aspects

"You can only learn what you can represent": this means that every piece of information employed by
a computer, or generated by it as a pattern or a model, should be represented in a formal language24.
In ML, we distinguish between an example language and a hypothesis language. The first is used to
represent the observations of the data, and the second is used to represent hypotheses about the
data, or more generally, models (profiles).

3.2.1 EXAMPLE LANGUAGE

An example language consists of a set of features. Data about a single person consists of a set of such
features with their values. Examples of such features are that the person with ID=246876 is vegetar-
ian, married, is sitting on chair number 23D, and that he (another feature) is from the Netherlands.
Each feature consists of the name of the item plus the value for this individual. The feature vegetar-
ian is called boolean because it can only have one of the values true and false. A set of feature-value
pairs can be seen as a record in some database, or equivalently, as a row or column in a spread-
sheet program and is called an example in ML. This type of representation is called propositional, or
attribute-value, and a dataset corresponds to a complete table in a database.

3.2.2 HYPOTHESIS LANGUAGE

Whereas the example language describes individuals, and usually consist of factual (or, observed)
data, the hypothesis language describes general patterns that hold for a group of individuals. In this
article, we consider a profile as a construction in the hypothesis language, i.e. a model. There is a
large variety of possible languages and later we treat some in more detail. A very generic and simple
hypothesis language consists of the example language itself, extended with simple logical connec-

24See (Sowa, 1999) for a general introduction to knowledge representation.
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tives. For example, we could have the following expression in the hypothesis language: (A):(vegetarian=yes
AND gender=female AND nationality=Dutch). This expression models all female Dutch vegetarians.

More complex models could, for example, state that (B): people from the Middle East "usually"
do not eat pork meat. This type of model requires more sophisticated expressions, in which we can
also express probabilistic information. In such models, if we assume we only know about some in-
dividual X that he is married and from the Middle East, we could infer with some confidence that he
will not eat pork meat – even though this is not factual knowledge (i.e. we have no explicit record
stating that). In general we can say that the profile enables to make (probabilistic) predictions about
an individual, backed by knowledge about the distribution in the population. Profiles can consist of
rules or correlations about the relations between features, but they can also divide the group of indi-
viduals up into a number of subgroups the members of which share certain properties, or they can
be complex functions that compute a value or class label based on some features.

The relation between models and examples is intuitively that a model holds for an example, e.g.
model A holds for all female Dutch vegetarians. In technical terms this is called a coverage relation,
and it entails that the model is more general than a specific example (e.g. it holds for other examples
too). In the same way, models can be compared too in terms of how general they are. For example,
if we drop vegetarian=yes from model A we get a more general model. Rules A and B above can be
seen as local models, because presumably they will be part of larger models. In addition to gener-
ality, the model complexity is important; models can be complex (complicated interactions between
features) or simple, and in general, models which are only as complex as needed to model the data25

are preferred (see later: algorithmics).

3.2.3 BACKGROUND KNOWLEDGE

An additional aspect of ML is what we will call background knowledge. This type of knowledge in-
cludes "everything" that is available about a certain domain. This includes commonsense databases
we have mentioned earlier. This type of knowledge can be used to answer more complex queries
about a domain, or build more complex models. For example, a very simple piece of knowledge ex-
pressing the set of countries belonging to the Middle East (e.g. Egypt, Lebanon etc.) can help to build
models in which the more general concept Middle-East (i.e. a new feature) can be used to group
sets of observed features expressing only countries. Such forms of background knowledge form the
basis of so-called ontologies, which relate pieces of knowledge to each other. For some models, the
use of background knowledge is less supported (e.g. in neural networks), but for others, for example
relational learning techniques, they are naturally incorporated. Lately considerable interest is de-
veloping in probabilistic ontologies (Poole et al., 2009) which can be used in probabilistic (relational)
learning techniques (De Raedt, 2008).

3.3 Models

One way to distinguish the many models appearing in ML is by looking at what they model. We
come back here to the difference between the ex ante and ex post categorization (see page 5). Many
ML models are based on ex ante categorization, for example classification and regression techniques.
They are focused on mapping examples (e.g. individuals) onto an a priori defined set of class labels.
Examples include neural networks, support vector machines and decision trees. These models are

25AI has developed very sophisticated hypothesis languages for modeling. However, research in subfields such as ar-
tificial life and related economic approaches show that extremely simple models per individual can create enormously
complex global behavior of the population at large. This has been shown in synthetic psychology (Braitenberg, 1984),
flocks of birds and sheep (Resnick, 1994), traffic patterns and computer generated art (Papert, 1980; Resnick, 1994) and
various economic models (Epstein and Axtell, 1996). A fundamental difference with the profiles in this article is that we
focus on how to model individual behaviors by learning from a large population of individuals, whereas the other models
try to explain global phenomena by looking at the individual level.
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often called discriminative models and they are used to learn a desired input-output mapping; for
example to map people into distinct categories26. In contrast, as Hildebrandt (2008) describes, for
profiling other types of models are more interesting. These fall into the ex post category. In ML
terms, these include clustering techniques, but more generally models that capture the data in some
way, and which highlight interesting patterns or correlation in that data. These include (association)
rules and especially probabilistic models, such as Bayesian networks, which can represent causal
and probabilistic patterns in the data. These models generally fall into the category of descriptive or
generative models.

An important thing about models is that they usually have qualitative and quantitative parts. A
qualitative part may express some (causal) relations between features, for example that a person’s
length feature depends on the gender feature. The quantitative aspect expresses how strong this de-
pendency is. Most models have some form of weights, parameters or probabilities, and these quanti-
ties provide the flexibility of the (qualitative) model class.

3.3.1 RULES AND PATTERNS

A simple form of models consists of local patterns, or association rules. In this case the hypoth-
esis language gives rise to rules of the form: IF feature(1)=value(1) AND feature(2)=value(2) AND
. . . feature(n)=value(n) THEN feature(n+1)=value(n+1). This rule says that if certain features (1 to n)
have specific values, then we can infer that another feature (n+1) has some specific value. In prob-
abilistic models, we would say that feature(n+1) has value (n+1) with a probability p. Many rule
learning approaches and datamining approaches are based on this type of local models. A similar
device is the frequent itemset often employed in datamining contexts. A frequent itemset is a set of
features with their value that occurs "often enough". For example, in shopping scenarios, it might
be useful to know that people who buy chips will often also buy beer and wine. Frequent itemsets
are dependent on a treshold (e.g. what exactly is "frequent"?) and can provide useful information
about common patterns in examples. Both kinds of association rules and frequent itemsets are local
models which are usually combined into larger structures (e.g. they serve in classification machines)
or they provide the components of joint models such as Bayesian networks which will be discussed
next.

3.3.2 PROBABILISTIC GRAPHICAL MODELS: BAYESIAN NETWORKS

Since profiling deals with uncertain data, unreliable sources of that data, and also uncertainty in
what it can predict about users and their behavior, models that can explicitly deal with probabilistic
aspects are desired. For example, in a webshop, lots of knowledge about customers may be available,
yet most of it is not very certain, and one can only make predictions about how likely it is for someone
to buy a product. One of the core models in contemporary AI and ML is the class of the probabilistic
graphical models, (Koller and Friedman, 2009), which includes Bayesian networks (Pearl, 1988).

For profiling purposes, we are not so much interested in learning a specific classification func-
tion, but we are more interested in a general model of the data itself. The problem, however, is that
a set of features gives rise to an enormous amount of different combinations of these features be-
cause of all the possible interdependencies among them. Estimating distinct probabilities for all
these possibilities, so-called joint probabilities is hardly possible because it leads to huge models and
long computations. In order to illustrate this, let us assume we have the following (boolean) features
about an automobile engine27:

p1: The starter motor is ok.

26For more on these types of models, see (Anrig et al., 2008) or any of the mentioned textbooks in this section.
27Many toy examples in graphical models are aimed at diagnostic reasoning about machines. The example here stems

from (Nilsson, 2010). Another well-known example is the burglary alarm case by Pearl (1988).
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Figure 1: (left) Bayesian network, (right) dynamic Bayesian network (with CPTs)

p2: The starter motor cranks the engine when the starter switch is turned on.
p3: The fuel system is ok.
p4: The car starts when the starter switch is turned on

These four are obviously related. We can assume that p4 is dependent on the other three and if we
would know that it is false, it would tell us something about the other three. Now, the number of dif-
ferent feature-value combinations is 24 = 16, because we can have 2 different values for each feature
(e.g. if we take ¬p1 to stand for p1=false, then the combinations are p1,p2,p3,p4 or ¬,p1,p2,p3,p4
or ¬p1,¬p2,p3,p4, etc). A full probability model would have to represent (and learn) these 16 val-
ues. If we expand the number of features to only 20, we already arrive at more than a million (220)
different combinations, and this number grows very quickly28. In some small domains, such as this
one, a domain expert might be able to specify all these 16 numbers, from which (with a little help
from probability theory) one could compute probabilities for situations such as "the car starts and
we only know that the fuel system is ok for sure". If, instead, we would assume that all features are in-
dependent, we would only have to remember the 4 probabilities P (p1), P (p2), P (p3) and P (p3), from
which we could calculate the probability of e.g. ¬p1,p2,p3,p4 as (1−P (p1))×P (p2)×P (p3)×P (p4).
Now, a natural assumption is that in most common domains, the features will neither be completely
independent, nor completely dependent on all other features, and we can assume the number of
relevant probabilities to represent falls in between 4 and 16 in our domain. Bayesian networks are
capable of making these dependencies (and independencies) explicit.

A Bayesian network consists of nodes which represent the features in our domain, and arrows
which represent direct influences among features, but also indicate certain probabilistic independen-
cies among them. The only restriction is that there can be no cycles in the model (i.e. no endless
loops of arrows). The Bayesian network for our automobile domain is depicted in Figure 1(left). For
example, the probability of p4 (car starts) does not depend on the probability of p1 (starter motor
ok) if we already know (or we are given) p2 (car cranks) and p3 (fuel ok). In the model we can see
this because there is no direct link between p1 and p4. Furthermore, if we know p1 then we do not
possess more information about p4 if we already know p2 and p3. Technically, the probability of p4
is conditionally independent of p1, given p4’s parents29, which are p2 and p3.

Now, instead of the full joint distribution of 16 probabilities, the network only contains 8 proba-
bilities, and they are kept in local probability distributions at each node, called conditional proba-
bility tables (CPT). For example, since the probability of p4 depends on the features p2 and p3, the
CPT in p4 consists of the values (where P (X |Y ) stands for the probability of X given that we know that
Y holds) P (p4|p2, p3), P (p4|¬p2, p3), P (p4|p2,¬p3) and P (p4|¬p2,¬p3). For the node p2 we only
need 2 values (the different states of p1) and for the nodes p1 and p3 we need only one value each

28And this becomes even worse for non-boolean features, for example number of children. If the number of values of the
feature is n and the number of features is k then the number of combinations is nk .

29A parent of a node N is a node which has an arrow pointing towards N , and the children of node N are all the nodes
that have N as parent.
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Figure 2: A clustering of music artists.

(the unconditional probability of being true, also called the prior). Using probability theory we can
compute all 16 joint probabilities from just these 8 values. How these CPTs come about in the pres-
ence of data is discussed in the next sections. Coming back to the previous; for Bayesian networks,
the topology of the network (nodes and connections) is the qualitative part, and the CPTs form the
quantitative part. Bayesian networks are expressive enough to model any probability distribution
over a given set of variables, which indicates their applicability and popularity. Another main reason
for their widespread use is that efficient algorithms for inference and learning exist.

Bayesian networks form only the base model for the case where all features can – in principle – be
observed and allow for various sorts of inference about the data. With the right algorithms, networks
of considerable size (more than hundreds of nodes) can be used. Several extensions were devel-
oped in the literature, for example in the form of Markov networks, where the influences are modeled
through undirected arrows, and which therefore allow cycles. An important class of extensions adds
a temporal dimension. In many domains we can have features that are measured at different points
in time. For example, we can have a feature visited(t) denoting that a user has visited our webpage at
time t. Now, presumably, a visit at a next time (visited(t+1)) will depend on visited(t). Figure 1(right)
shows an example of a dynamic Bayesian network in which the probability of raining is dependent on
yesterday’s weather, and the probability of bringing my umbrella today will depend only on today’s
weather. A third type of extensions add unobserved features to the network. For example, hidden
Markov Models are well-known in speech recognition, where the observed features are the phonemes
(i.e. sounds in the speech signal) and the unobserved features are the words which are spoken. Such
networks model the probability distribution over a sequence of phonemes, conditioned on the word
(which is not observed, but can only be inferred).

3.3.3 DISTANCES, KERNELS AND PROTOTYPES

Another type of model we want to discuss briefly are instance based and distance based methods.
Instead of building an explicit model of the underlying probability distribution of the data, as with
probabilistic graphical models, we can also look at the similarity between examples. The simplest
way to do this, is to consider each set of features (an example) as a vector in n dimensions, where
n is the number of features. Now, one can compute the standard Euclidean distance between two
vectors, in the same way as one would compute a distance between points in a 3D space (i.e. between
two three-dimensional feature vectors (X, Y, Z)). Such distances are used in any standard clustering
technique. Using distance measures, the data itself is actually the model.
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As an example, see the Music Map30 in Figure 2, in which the band Epica is centered among
bands that are similar in terms of the music they make. Based on this clustering of bands, I can
find out about bands I possibly like too, even though I may not know them. Instance based learning
(or, memory-based) learning uses the complete dataset and assigns a new example to the closest
(or the n closest) example(s) that is (are) already in the dataset. In terms of profiling, I could find
the closest individual in the dataset and most properties of that closest one will also apply to the
new individual. Generated clusterings can also be used to decrease the dataset by only keeping a
couple of prototypes, the cluster centers which are in some way typical representatives of some kind.
Nowadays, more sophisticated approaches under the name of kernels exist (Schölkopf and Smola,
2002). Kernels are in essence distance functions, but go beyond that and are capable of modeling,
and learning, similarities for very complex structures such as graphs, web pages, databases, images,
sequences and many more.

3.3.4 A NOTE ON RELATIONAL KNOWLEDGE REPRESENTATION

So far, we have dealt with propositional knowledge representations and models. However, for many
domains it is desired to have more powerful representations that can deal with explicit relations be-
tween individuals in models. This is useful for modeling social network relations, but also for exam-
ple for pedigrees concerning blood types. In the latter, the blood type of one person is probabilisti-
cally dependent on the blood type of his or her parents. This constitutes a relation between features
of one individual and those of others. Relational representations of knowledge for machine learning
can make these aspects explicit. Hypothesis languages for these systems are based on first-order logic
in which one can state things such as ∀X∃Y : parent(Y , X ), meaning for all persons X, there is a per-
son Y who is the parent of X, or everybody has a parent. These representations also enable new things
like collective classification, in which, for example, one can classify people in a social network in the
context of how his or her friends are classified, because of the explicit relations between this person
and friends in the social network.

These representations are beyond the scope of this article, and we refer to (De Raedt, 2008) for
pointers to the literature. They are important to mention because i) they are becoming widespread
in AI (all discussed techniques such as patterns and kernels are applicable), ii) many ML systems use
them (e.g. the examples on the photo categorization and the bike theft we mentioned earlier) and iii)
most importantly, many of them are based on the exact same graphical models we discuss here.

3.4 Algorithmic Aspects

Representation is about which phenomena one can model; algorithms are all about how they come
about. Inductive methods are the most typical ML setting, in which a dataset of examples is used to
learn a model, i.e. to generate new knowledge. However, here we will discuss two additional types
which together with inductive techniques form an integrated whole31 for learning and profiling. Let
us assume we have a dataset D of examples (each consisting of available features and their values)
and a model class M of all possible models (where we assume that M extends to models where we
employ any available background knowledge).

• deduction assumes the existence of a specific model m (from M) and computes statements (or
their probability) that are entailed by m. These statements are about the general characteristics
of the data D modeled by m. In addition, one can infer statements about a particular example
d . Deduction is about employing profiles to derive information.

30This website features clusterings music artists that are "close" to one you search for (http://www.music-map.com/).
31One of the first scientists writing about the three together, and laying a foundation for many contemporary abductive

approaches was C. S. Peirce (http://en.wikipedia.org/wiki/Charles_Sanders_Peirce).
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• induction takes a dataset D and finds a specific model m in M which best fits the data. Induc-
tion is the core mechanism for profiling, and is about obtaining models from data.

• abduction takes a specific example e (from E) and a specific model m (from M) and computes
an explanation (e.g. a set of assumed facts) which would enable to infer the example from the
theory (with some certainty). Abduction supports diagnostic reasoning about individuals.

3.4.1 DEDUCTION AND INFERENCE

Deductive inference assumes a model is present and amounts to reasoning from causes to conse-
quences. The models in the above are like theories about a domain supporting these inferences.
From if A then B and A one can infer that B. Deduction can generate "new" knowledge that is entailed
by the model but which is maybe not not immediately present. For example, complex mathemati-
cal theorems are often a consequence of basic math, but it takes deductive inference to make that
explicit.

Let us take a look at probabilistic inference. In the Bayesian network in Figure 1(right), if we know
that it rains at time t , we can infer that the probability that it will rain at time t +1 is 0.7 and based on
that, we can infer that the probability I will take my umbrella is 0.7∗ .09 = 0.63. Bayesian networks
are typically used to compute a posterior probability of some features, given that one knows about
the values of some other features. If in the same network, we know only that it rains at time t +1, we
can infer that for my umbrella the probability of bringing is now 0.9 that it rained at time t is 0.49.
Inference needs a query (e.g. a question) and a model, and it will determine whether the query is
entailed by the model (possibly with a probability attached). In case we have several (local) models,
their predictions have to be combined32.

Since exact inference for large networks or theories can take long to compute, many efficient
approximations exist that can guarantee a good enough answer in less time. Typically they do this by
sampling. Instead of computing the probabilities using exact rules, they "try out" a number of values
for features (in a smart way) and see what the probability of the feature you are interested in is in that
sample set. More samples means more accurate answers. Approximation is also needed for efficient
inference with huge (probabilistic) ontologies and commonsense knowledge databases.

Another example of probabilistic inference on a very simple model (profile) of users in a social
network was given recently in Van den Broeck et al. (2010). The context here is marketing and the goal
of the system was to find the best selection of people to send direct mail to. Rules were very simple
and stated that i) if I send an advertisement to person X he will buy my product with some probability,
ii) if person X buys my product and person X and Y are friends, then Y will buy my product too with a
certain probability. Sending mails costs money, but selling products will result in receiving money.
The system was capable of doing probabilistic inference on what would happen33 (for thousands of
people in the network) if we would send a certain selection of people a mailing. Thus, the query was
about which people would (probably) buy the product, given that I send a mailing to certain people.

3.4.2 INDUCTION, LEARNING AND MINING

Learning (and mining) is essentially a search process. Given a space of models (generated by a choice
for hypothesis language and background knowledge) the goal of learning is to find the "best" model
for a given dataset. A general-to-specific ordering on the space of models can help to search starting
from simple models to more complex models. A crucial component is a goodness measure that tells
us how well a model fits the data. For example in the case of Bayesian networks, this comes down to
comparing the distribution specified by the model, and that of the data. In order to make sure the

32See the article on a large-scale application with a computer playing Jeopardy in the New York Times ("What Is I.B.M.’s
Watson?", June 14, 2010) where more than a dozen probabilistic algorithms are combined to make predictions.

33An additional, approximate, optimization step was added to actually find a best selection.
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model can generalize to new data, usually the data is split into a training set and a test set. The first
is used to find a model, and then the second (which is not used for learning the model) is used to
validate how good the model actually is on data it has never seen before.

Learning can focus on the parameters (e.g. probabilities) of a known model structure (the quanti-
tative part) or on the model structure itself (the qualitative part). We will discuss both in turn. First of
all, learning the parameters is basically a matter of counting on "sample statistics". This means that,
e.g. for p4’s CPT in the automobile example of Section 3.3.2, to estimate P (p4|p2, p3) we can count
in the data in how many examples p4 is true when p2 and p3 are both true. The network structure
gives us the knowledge of which probabilities we actually have to compute from the data. For tem-
poral models and especially models with hidden features things become more complicated, since
some of the features are not really observed and we have to guess whether they were true or not. Still,
relatively efficient techniques exist to compute these numbers from data.

Learning the qualitative part of models is more complex and deals with learning which feature
interactions exist in the data. Common ML techniques go through the following steps:

1. Start. First an initial model is chosen. Based on a generality order, we would like to start with
the simplest one, which for Bayesian networks is a topology with no arcs (so, just the nodes).
Here this amounts to assuming all features are independent. For rule learners, or pattern min-
ers, one might start with rules with an empty condition, or the pattern true (which applies to
any example).

2. Find out how good the current model is. Based on a goodness measure, we can score the
current model. For Bayesian networks, we can estimate (read: do parameter learning) how
well it models the distribution in the data, and for rules or patterns, we can e.g. calculate to
how many examples they apply.

3. Find a possibly better model by changing the current one. Given the current model, we can
change small things to find an improved model. The model class determines what we can do.
In Bayesian networks, we can add an arc between two features, delete one that is already there,
or even swap nodes. For rules or patterns, we can add conditions to a rule, or delete them.
Since there are several ways to modify the model, we try them all (or a selection) and estimate
their goodness. The best modification is chosen and we continue from this model with the
previous step and so on. This type of search is called hill-climbing, because it tries to improve
the model until no further improvements are possible from that model.

Given any space of models, the search for the right model is much influenced by a search bias (how
do we search? do we keep multiple candidate models?, by a language bias (which models do we
"visit"? which modifications are allowed? can we add hidden features?) and the goodness measure.
The last one relies on the deductive inferences we can make with our model. For Bayesian networks,
there are many applications in which the network was successfully learned from data (see Koller and
Friedman, 2009, for pointers).

3.4.3 ABDUCTION, ASSUMPTIONS AND EXPLANATIONS

Abduction (Josephson and Josephson, 1994) is something like the opposite of deduction, in that it
reasons from consequences to causes. If we assume that if A then B and we observe B then we could
assume that A. But if we also assume that if C then B then also C could be an explanation for the
observation B. Abductive inference is unsound, which means that we do not know for sure whether A
or C are true, but we can only assume that they are. Both A and C are hypotheses that we could take on
to explain the observation B. Each of these two could be considered new knowledge the moment we
accept them as being true (i.e. assume them). The problem remains: how to choose between them?
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In some cases, we could choose the "simplest" one, in the same way as we can compare models using
a generality order.

In probabilistic models, choosing the best one can be stated as finding the hypothesis with the
highest probability of having caused the observation. For example, in speech recognition we are look-
ing for the word with the highest probability of having caused a certain speech signal. Or, in activity
recognition, we are looking for that activity for which the probability of causing the observed user be-
havior is the highest. In our automobile application, one possible hypothesis for ¬p4 (car does not
start) is that ¬p3 (fuel system down). But another possibility is that ¬p1 (starter motor broken), and
there are several other possibilities (e.g. they could be both broken). Finding the most likely values of
p1, p2 and p3 given that ¬p4, is called the maximum a posteriori (or, MAP) hypothesis. In essence
it is very similar to induction, for it searches for the best set of assumptions (i.e. modifications to the
example) that will maximize a goodness measure (i.e. the likelihood of those assumptions causing
the observation).

3.5 Summary

As we have seen, deduction is about deriving knowledge that is (probabilistically) entailed by the
model, and both inductive and abductive techniques can deliver new knowledge; the former in the
form of rules (or patterns) and the latter in the form of facts (features). Here we stress again that for
most applications of ML, it is natural, and it makes sense, to integrate the three styles of reasoning to
make the best out of the data.

As an example of a very successful application of such a combination, Ross King has worked for
many years on the robot scientist, a physical robot capable of fully automatically doing real scientific
experiments, by combining the deductive, abductive and inductive methods (King et al., 2004, 2009).
The domain is bioinformatics and the goal is to find out the function of yeast genes. The system
is given knowledge about biological theories, and based on that, it applies abduction to come up
with hypotheses to be tested. Deductive consequences of these can help in selecting them, based
on the predicted costs of conducting them. Based on actual physical experiments (conducted by
the robot Adam himself) and their outcomes, Adam learns new rules by applying inductive learning
techniques, and has even made some new discoveries.

4. Computer Says No

Using computers for profiling, and controlling people in what they can or cannot do based on those
profiles, has the potential to create circumstances in which the computer simply says "No"34. Below
we highlight some caveats and recent directions in machine learning which are relevant.

4.1 Caveats of Statistical Models

"A man who travels a lot was concerned about the possibility of a bomb on board his plane. He deter-
mined the probability of this, found it to be low but not low enough for him, so now he always travels
with a bomb in his suitcase. He reasons that the probability of two bombs being on board would be
infinitesimal".(Paulos, 1988, p.21)
Humans are notoriously bad35 with numbers and statistics but there is no guarantee if we use com-

34This is used in the British comedy series Little Britain in series of sketches involving Carol Beer. Carol’s sketches
revolve around her bored and unhelpful attitude to her customers. Whether in the bank, travel agency or hospi-
tal, she listlessly inputs customers’ requests into her computer only to flatly reply with her catchphrase, "Computer
says no..." This is usually followed by a single cough, directed at the customer, with no attempt to cover her mouth
(http://en.wikipedia.org/wiki/Carol_Beer).

35A large number of books have been written about the topic. See the following texts for entertaining discussions: (Re-
ichmann, 1961), (Tversky and Kahneman, 1981), (Paulos, 1988), (Gonick and Smith, 1993), (Best, 2001) and (Whyte, 2004).
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Figure 3: Causal versus correlation: two ways of modeling the same distribution in a Bayesian network.

puters to do profiling, things are settled. Since current ML is basically doing statistics with powerful
knowledge representation, most of the general issues with statistics carry over to ML. This includes
sample size (do I have enough data to make predictions?), data set distribution (does my target popu-
lation have the "same" characteristics as the population I have trained my model on?) and complete-
ness of the model (do storks really bring babies or is there an unmodeled factor explaining a possible
correlation between births and stork populations?).

In the context of ML, due to the rich set of hypothesis languages and models, important addi-
tional aspects are the search and language biases, the goodness measure, but also whether inference
is done exactly or approximately. All these factors determine what exactly one can expect from the
final model. The rich class of models that ML supports also creates a bias-variance trade-off which
intuitively says that one can either i) choose for very general models, but then the variance in the re-
sults of that model is large, or ii) one can choose more specific models (biases by preferences or prior
knowledge) and get a lower variance, but maybe the model does not fit the underlying characteristics
of data anymore. The search process for good models itself influences the final model, since usually
there is no guarantee we get the best model possible, but only good in the "vicinity" of models we
have visited during the search. For example, take a look at Figure 3. Both small networks model the
same distribution that is depicted on the left, but differ in the connection structure. Since this can
happen in such small models, one can imagine that small differences in how the search progresses
can generate different networks in the end.

A last thing to keep in mind is that models are trained using a global goodness measure, i.e. the
model is judged on how well it predicts on average. This means that predictions for any individual
may be wrong; something to consider when it comes to profiling (what do we do if the model predicts
the individual to have some property with only probability 0.6; do we act upon this?)

4.2 Comprehensibility, Transparency, Visualization, Automation

Instead of privacy enhancing technologies, Hildebrandt and Koops (2010) advocate transparency en-
hancing technologies (TET) to aid in developing ambient law. In the context of ML several develop-
ments are relevant for enabling TETs.

Comprehensibility of what is being learned has always been somewhat neglected in ML and only
sometimes it is discussed explicitly (e.g. Džeroski and Lavrac, 2001, Sec 15.6.). In general it is accepted
that e.g. neural networks are less comprehensible, and Bayesian networks and relational representa-
tions support understanding what has been learned in human understandable terms. But one has to
be careful with such models too. For humans, huge sets of hundreds of rules are very hard to inspect
visually, especially when their predictions are combined probabilistically in complex ways. Further-
more, humans have a built-in bias to interpret models in a causal way. Look again at the Figure 3. An
arrow from A to B immediately triggers a causal interpretation that A causes B, but actually this arc
only indicates a dependency, and we can also place the arrow the other way around. On the other
hand, if we stick to a causal model, we end up having to specify fewer numbers, and the numbers will
often be easier to come up with36.

There many developments that make data visualization easier, and many new creative ways are

36(Russell and Norvig, 2003, p.498)
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being developed to visualize data, and it will be useful to employ such techniques in the context of
profiling too. In the ML community there have been efforts to create benchmarks datasets37 to be
able to compare algorithms with at least the same data. A very relevant development in the direc-
tion of TETs may come from experiment databases (see the recent PhD thesis by Vanschoren (2010)).
The goal of such databases is to store, in addition to data itself, the used algorithms, settings and pa-
rameters and results of experiments in ML. The main goal is to be able to compare algorithms more
carefully, and to not repeat experiments that have been done over and over again by many scientists.
Recent efforts go into developing query languages to ask any question about experiments, or find
relevant experiments and results in case we want to relate to our own experiments. A similar goal is
reported in the work on the robot scientist we discussed earlier: by making everything explicit (data,
hypotheses, algorithms, parameters and results) in formal languages, one can make the whole pro-
cess of learning from data transparent and reusable. Similar efforts are reported in the robotics world
(e.g. the mentioned roboearth project) where the goal is to make robot’s knowledge learned on a task
transparent, understandable for both humans and robots, and reusable.

4.3 Feedback, Active Learning, and Adaptive Behavior

So far, we have mainly dealt with the situation where there is some dataset, and we want to build a
model out of it. However, if models function as profiles, presumably something is going to be done
with the information drawn from the model (see also Hildebrandt, 2008, Sec. 2.4.4.). For example,
if the model represents information about customers in a webshop, the model will be used to target
specific users to receive advertisements, discounts, or even get rejected from accessing the store (e.g.
for not paying on time). This, in turn, can trigger the population of customers to change – either
customers coming and leaving, or by customers changing their behaviors, and this, in turn, may
require to rebuild the model because it is outdated. In other words, profiling generates models, and
actions based on these models will change the behavior of individuals, and because of that models
will (have to) change, and this feedback loop will continue.

With respect to acting upon the data, the ML subfield of reinforcement learning (RL) (Sutton and
Barto, 1998; van Otterlo, 2009) studies learning techniques with such feedback loops. A typical toy
domain in RL is a maze. A policy represents the behavior of a robot moving through the maze, and
based on this policy the robot will visit parts of the maze. Once it modifies its behavior (its policy),
the parts of the maze the robot visits will change, and this again drives a new modification of the
behavior and so on. An important characteristic of RL is a reward function which drives behavior
modifications. Our maze robot will receive rewards for reaching the exit, and for using fewer steps.
The feedback the robot gets about its "progress" in learning how to behave is scarce (i.e. it does not
get specific instructions on how to get out, but only some feedback of how it is doing) and delayed
(good initial steps will only be rewarded at the end when it exits the maze). Translating this to a pro-
filing case in a webshop; the rewards can come from customers ordering products, and the actions
are advertisements and so on. An adaptive system could learn a model of its customers (as discussed
throughout this article) and based on that it could act38, get some feedback and possibly modify its
behavior based on that model. Many techniques in RL exist for learning behavior policies with or
without explicitly learning models, and they could provide another interesting direction for ambient
intelligence (cf. Hartz Søraker and Brey, 2007).

In the same direction the advent of probabilistic programming languages is very relevant. At
the crossing of approaches in probabilistic learning, RL, and relational learning and even robotics,

37With the UCI Machine Learning Repository being one of the oldest and most well-known
(http://www.ics.uci.edu/ mlearn/MLRepository.html).

38One cycle of this was discussed earlier when we mentioned the system by (Van den Broeck et al., 2010); only here the
model was given beforehand and not learned.
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programming languages are developing that support probabilistic ML and RL39. As an example, take
the following (made-up) program fragment:

p := P(customer X buys product Y | X browsed through webpages Z and W)
IF p > 0.70 THEN place_advertisement_discount(page_top, product_X)
r := profit_product_X - advertisement_cost
...

Both p and r are parameters of the program that are not available when writing the program. The
program itself expresses the knowledge available at that time, and the parameters are autonomously
learned from data when the program becomes active. A parameter such as p can come from e.g. a
Bayesian network as the one we have discussed in this article, since most of these languages are based
on the same probabilistic graphical models we have discussed. A program can also contain several
choice points, i.e. places where the program can select one of several actions, which can be learned
through RL (cf. Simpkins et al., 2008; van Otterlo, 2009). Several40 probabilistic relational learning
systems are being expanded into such fully adaptive, probabilistic programming languages (Poole,
2010). Profiling programs, programmed in such languages will eventually have full autonomy41 in
gathering, analyzing and exploiting data, and it is especially here where new TETs are required42.

5. Conclusions

In this article we report on a machine learning view on profiling. We have discussed representations
and algorithms for learning models of user behaviors, which we have framed as activity recognition,
an active branch of machine learning and artificial intelligence. We have discussed some descriptive
models in more detail, to highlight vital issues in the process of learning about, and prediction of,
users and their behaviors.

The previous section has presented two directions that are, in our opinion, interesting to look at
in the future when it comes to privacy issues in profiling. The transparency issue is important, and it
is interesting to see that recent directions in machine learning seem to be focused on transparency,
albeit often for different reasons. In many other cases, transparency seems to be a paradoxical issue:
on the one hand, transparency in experiments gives the opportunity to relate, reuse and explain, yet
on the other hand, the success of e.g. Google makes comprehensibility and transparency less relevant
since "big statistics" can solve many problems in searching for the right webpage and translating
texts. Transparency is a key issue though, and especially in the context of adaptive, probabilistic
programming languages, which constitutes the second direction.
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