In this article Martijn van Otterlo provides an introduction to some current issues in the ethics of intelligent algorithms.

“Solving the value-loading problem is a research challenge worthy of some of the next generation's best mathematical talent” [6, p. 229]

“Supercharged with a larger cerebral cortex, faster learning, and a longer time horizon, is it possible that we solve complex problems in mathematics the same way that monkeys find optimal paths?” [29, p. 20152]

Artificial Intelligence (AI) [25] is booming. Although it has existed for more than six decades, recently it is literally everywhere. Phones have 'AI inside', computer games utilize 'AI opponents' and internet services let AI analyze posts and photos, personalize news feeds and find who or what you need. Each day news articles about AI appear, increasingly so since 2010 [11]. These advances have often profound consequences for our daily lives. For example, Google search fundamentally changed the way we obtain information [41] and Facebook’s face recognition changed our personal privacy forever. Much of the current progress comes from the subfield of machine learning (ML) [19] and more specifically from a technique called deep learning (DL) [16] which has its roots in earlier neural networks. ML makes use of data to inductively generate predictive models. For example, based on a huge dataset of images, computers can nowadays be trained to recognize various items on pictures, and companies such as Facebook are heavily investing in such technology.

Anticipations of AI: good and bad
It is hard to predict where things are heading with all this progress in AI. Terry Sejnowski wrote in 2010 that reinforcement learning (RL) [46], a special kind of ML, had just beaten a 5th dan human professional in the board game Go, using similar techniques used to learn backgammon much earlier [35]. AI experts predicted that beating the human overall Go champion would take a decade at least when suddenly in 2016 the DL AlphaGo program [31] did just that after first beating humans at Atari games. But whereas AlphaGo learned from lots of human moves, its successor AlphaZero [32] returned to ideas that solved backgammon, and taught itself by just playing against incrementally better versions of itself and beat everyone, including AlphaGo, 100 against 0. Interestingly, the same ML method also dominates (human and machine) in chess after only 4 hours of training, from scratch, by itself, only 20 years after the heavily engineered IBM’s DeepBlue algorithm beat the human champion Gary Kasparov.

Predicting developments is hard [14], but it is important to anticipate what can happen if AI achieves general human-level intelligence. Half of the experts in a 2013 panel predicted it to happen between 2040–2050, and most experts predicted superintelligence [6] would follow 30 years later, but 30 percent did not see this as positive for humanity [24]. Another study predicted human-level skills such as translation (by 2024) and surgery (by 2053) [17]. Negative consequences of AI, ranging from loss of jobs, to malicious use [48], and to superintelligence dominating humanity, have appeared in mainstream media too [11]. Until recently, criticism of AI (and especially ML) technology often came from the social sciences and legal scholars and was mainly about data-related concerns such as privacy, surveillance and discrimination [40]. More recently the broader implications of intelligent algorithms on society are studied [23, 44] and more importantly, by scholars from AI and ML itself. Recent reports explicitly take into account the ethical dimensions of AI for society [28, 34]. Recent books join: Tegmark’s [37] (near and far AI future), Walsh’s [45] on the status of AI, and Shanahan’s overview [30] of the singularity.

Ethics of intelligent algorithms
Powerful ML algorithms can have profound influence in our digital society. Consider a case where a social network would approach users with a request to ‘go nice’ on a particular friend because it has statistically predicted that there is a higher than aver-
age probability that this friend has suicidal tendencies. This may sound creepy [38], but it is one of Facebook's recent plans: to predict potential suicides [50]. In a related effort, Google wants to detect depression [51]. Such predictions are technically interesting if they are possible, and possibly an opportunity to 'do good', but at the same time they create ethical issues: can a social network disclose or use such predictions without asking, and would that change people's behavior (of that friend, and towards that friend)? Even more ethically challenging, similar predictive capabilities can also be used to target insecure and troubled teenagers for marketing purposes [52]. Most people would not find that ethically correct, but some may see this as normal market practices. Other situations where powerful ML algorithms are used with ethical consequences are search engines, personalized news feeds, and cur- ration on the internet. Examples include Facebook fighting terrorism [53], Google battling fake news [54] and Twitter's moderation [55]. All these technologies solve a problem: information overload. Without filtering and curating, humans could not handle the enormous amount of information. However, the ethical issue here is that these algorithms select, hide (e.g. the removal of the iconic 'napalm girl' photo due to Facebook's anti-nudity policy [56]), and prioritize sources for us. They basically decide what we get to see, and what not [41], which can be 'for good' again, but may equally well be considered censorship.

The algorithmization of society brings us many novel ethical issues. The study of societal consequences of AI beyond simple privacy and surveillance has become known as ethics of algorithms [23,42,44]. Sometimes law can be the answer, but so often it is far too slow to adapt [38] and we need to consider general ethical analysis. Algorithms basically transform data into evidence, which then is used to compute actions. Evidence can be inconclusive, inscrutable or misguided and this can cause many ethical consequences of actions, relating to fairness, opacity, unjustified actions, and discrimination. In the Facebook suicide case, evidence based on only Facebook data may be inconclusive and actions to act upon suspected suicidal tendencies may be unjustified. Overall, algorithms have an impact on privacy and can have transformative effects on autonomy. For example, the simple fact that Google selects our news may change how we think about particular subjects, and affect our autonomy to make decisions and trap us into filter bubbles [20]. It is useful to distinguish several core classes of algorithms I identified elsewhere [44]:

1. inference algorithms (descriptive),
2. learning algorithms (predictive),
3. optimization algorithms (prescriptive),
4. superintelligence [6,30,37].

A fifth class consists of 'physical' algorithms such as internet-of-things and robots. Physicality will create another level of ethical problems [33], such as social backlash with surveillance robots [67] in public spaces or privacy issues with 'connected toys' [68]. Finding the right metaphor for how robots relate to non-physical algorithms may also help [27].

As said earlier, AI as a field is becoming aware of the issues itself. Novel ethics research centers arise [57], companies coordinate efforts [58], and scientists [59] and employees [60] speak out. In addition, education becomes aware [7,47]. AI sub-communities have started to openly discuss the issues and identify challenges and design principles. The engineering community started the IEEE Ethically Aligned Design initiative [64], aimed at developing a vision for prioritizing human well-being with autonomous and intelligent systems, to capture concepts like transparency and responsibility, and to develop industry standards for ethics. The robotics community came with their own Asilomar principles [65], a code of ethics which explicitly states 23 ethical principles for AI developers. The list includes general goals such as that AI should not target the creation of undirected intelligence, but instead should develop beneficial intelligence (principle 1). It also contains statements about judicial (principle 8) and failure (principle 7) transparency: an AI system should be able to explain its decisions.

Important values desirable in complex AI systems include transparency and explainability, to avoid opacity in decision making. Equally important are responsibility, liability and accountability [9] (“Who is to blame if an algorithm does harm?”). This should lead to safe and trustworthy AI systems. All these efforts should lead to professional codes of ethics for the development and employment of AI [5]. As I illustrated elsewhere [43], there is a strong parallel between these values (and intentions) and those behind human codes of ethics for various professions: they are used to openly and transparently communicate to the outside world what are the norms and values in a particular profession, and by doing that to earn trust and acceptance from outside. For increasingly intelligent AI, it is vital that not just the humans comply with the code, but the AIs too. For the latter, one literally obtains a code of ethics, embedded in the AI's program.

Towards building ethical AI systems

These ethical dimensions require AI designers to act responsibly. Some hope for a "big red button" [49] to shut down 'rogue' AI systems, but that seems naive [4]. A better idea is to incorporate ethical thinking in the design of AI systems, possibly with the use of AI technology itself. For example, if a profiling algorithm is discriminatory,
one can modify it such that inherent biases are changed, or if autonomous cars can crash they should learn how to do it ‘least harmfully’. Building ethical values into AI requires two things [6]:

1. a capacity to acquire ethical values, possibly from humans,
2. knowledge of which human values are important.

The field of AI is heavily invested lately in working on these two main issues. Some employ so-called ethics bots [10] to assist humans, while others focus on obtaining human ethical values through massive experiments [71]. In the following paragraphs, I briefly mention four current research directions.

Fairness in machine learning

Many successful AI systems are based on ML, of which predictions can be biased by the data, parameters and application processes. A well-studied case concerns recidivism risk score predictions in the American judicial system [69], which sparked a lot of debate on what fairness actually is. In addition, it also showed that inherent biases in such decision making systems can have profound legal consequences. In relation to that, the notion of fairness has many connections to other concepts such as diversity and discrimination, which also makes it a highly interdisciplinary topic. Fairness is a multi-objective problem and intuitively, but also formally, algorithms that are fair on all possible accounts are impossible. Many different interpretations of fairness are being studied and much effort is being put into fairness enhancing techniques, to remove some of the unwanted biases in predictive algorithms [12]. A strong community has risen under the name of fairness, accountability, and transparency in ML (FAT) [62].

Explaining black box systems

On top of fairness and bias-related issues comes the fact that most powerful decision-making AI systems have become too complex to be understandable by humans, even though many of their decisions affect people’s lives in various ways. Especially for deep learning systems there is a strong trade-off between accuracy, which contributes to the success of those models, and interpretability, which is hindered much by their complex, black box nature [8]. A current trend in ML is to investigate interpretability as a concept, and models that are (more) interpretable [70], sometimes capable of explaining the decisions of classifiers in human-understandable terms [26]. Much work is also being done on extracting (interpretable) knowledge from trained deep networks, for example by distilling [13], or other techniques that increase transparency and explanation [18]. Such approaches fit in a revived interest in so-called explainable AI [61].

Value-based AI

Much of the previous waves of attention to ethical issues dealt with a more limited set of aspects such as privacy and surveillance consequences of ML [40]. Currently, the focus is on the much broader notion of value alignment (VA): autonomous AI systems should be designed so that their goals and behaviors can be assured to align with human values throughout their operation. Obviously, VA is a multi-objective optimization problem too [39], and does view AI as an autonomous agent which takes actions and optimizes its behavior according to a utility function. Such settings are typical for the AI subfield of reinforcement learning (RL) [46]. RL is an ideal model for computational ethics [1], and many current VA issues studied in AI come from this area [2, 36]. Examples are

1. scalable oversight of ML systems by humans,
2. mild optimization, or ‘not optimizing too hard’,
3. learning from humans,
4. safe exploration.

RL is often used in combination with deep learning [21] (and because of that connects to all previously mentioned issues) but it can also be seen as an ideal suite of algorithms just because it is aimed at value-based optimization.

Ethical reasoning

The fourth direction towards ethical AI involves reasoning. As said, much of the success of current AI comes from learning approaches, but now (and in the past) these are being criticized [22] for their lack of explainability, and their incapability to insert and extract domain knowledge. Domain theories, models and formal logic, typically computer science tools, have been shown to be effective in the validation and verification of systems, and could be used to ensure their proper functioning [28]. It is only natural to consider logical models in the context of value alignment too, since they directly support declarative, explainable and verifiable reasoning of systems. AI has a rich tradition of such models, including those targeting reasoning about ethical aspects [3]. In recent work I introduced a novel approach combining formal logic, decision-theoretic optimization, and supervised machine learning for transparent (declarative), ethical reasoning in the face of uncertainty [43]. It is foreseeable that more such systems will follow to combine learning and reasoning about ethics in an explicit, and transparent way.

This text, but also the current state of the art, has only scratched the surface of what is needed to build truly ethical AI. The quotes at the beginning of this text show that this requires (mathematical) advances to build such intelligent systems, but also to obtain the means to endow such systems with our (human) values.
References

2. D. Amodei, C. Olah, J. Steinhardt, P. Christia-

7. E. Burton, J. Goldsmith, S. Koenig, B. Kui-

12. E. Burton, J. Goldsmith, S. Koenig, B. Kui-

15. N. Goodall, Ethical decision making during automated vehicle crashes, Transportation Research Record: Journal of the Transportation Research Board 2624 (2014), 55–65.

18. R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar and K. Sycara, Transparency and explanation in deep reinforcement learning neural net-

19. M.I. Jordan and T.M. Mitchell, Machine learning: Trends, perspectives, and pros-

22. G. Marcus, Deep learning: A critical apprais-

24. V.C. Müller and N. Bostrom, Future prog-

25. N.J. Nilsson, The Quest for Artificial Intel-

26. M.T. Ribeiro, S. Singh and C. Guestrin, Why should I trust you?: Explaining the predic-

27. N.M. Richards and W.D. Smart, How should the law think about robots?, in R. Calo, A.M. Froomkin and J. Kerr, eds., Robot Law, Ed-

28. S. Russell, D. Dewey and M. Tegmark, Re-

31. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwi-

32. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwi-

34. P. Stone, R. Brooks, E. Brynjolfsson, R. Calo, E. Bryjn...